Commentary

Acute infection and ischemic stroke:
A tale of unrecognized biases

Let me try to help you decide whether you want to
keep reading beyond the second paragraph.

To follow this commentary you need to know enough
about causal diagrams, which means knowing the
three possible sources of an association between two
variables (causal paths, confounding paths, and open
induced paths). If you don’t know what | am talking
about, first read the principles of causal diagrams in
an article of mine' (pages 58-59), or elsewhere. You
also need to know when and where we draw a
dashed line in a causal diagram. If you don’t, read
another commentary here titled “colliding bias (part
1): misnomers and the missing dashed line”. You
might also consider another option: keep reading —
even if only to realize what an eye opener you have
been missing in research methods.

*

It is highly unlikely that acute infection, with sepsis
among its scary sequelae, has a precisely null effect
on ischemic stroke — the null hypothesis which many
set up to reject. By precisely null, | mean a probability
ratio of 1 for the contrast between exposed (acute
infection) and unexposed. Not 1.01, not 1.001, and
not even 1.000000000000000000001. Exactly 1.
Sound unreasonable? It is. Infection can cause septic
shock, and shock can cause ischemic stroke because
brain tissue might die when its blood supply is
compromised. The cascade “infection—>sepsis—=>shock
—>stroke” alone tells us that the probability ratio
should not be exactly 1 (setting aside miraculous
nullification by another path through which acute
infection prevents stroke.) Next, ask yourself whether
you truly care about rejecting any null effect
hypothesis — if the true effect size happens to be
small enough, say, a probability ratio of 1.01. (I mean
the true effect size, not your estimate of the truth.)

So much for the null testing ritual, and for those who
think that research should inform us whether acute
infection is a cause of ischemic stroke. Yes, it is. (And
no, a small p-value does not lend support to the
estimate. The phrase “statistically significant
estimate” is misinterpreted, wider.Z)

The task at hand is, therefore, estimation. What is the
magnitude of the effect of acute infection on
ischemic stroke? Is the effect size near 1 or near 2? Is
it about 5 or about 10? How much does that effect
vary as a function of the time difference between the
two variables? That’s what various research designs
should estimate for us, for a start.

And they tell us different stories, many of which are
not explained by differences in the “hazard period”,
the period during which the effect is assumed
meaningful. Table 1 gives you an idea of what was
reported by studies in the past 20 years.3’11 At least
two studies differ from others on the order of twofold
or more: odds ratios of 6 to 8 versus odds ratios of 2
to 3. One study shows a twofold internal
disagreement between two research designs (case-
crossover vs. cohort).? Another reported odds ratios
of 1.5 or smaller. Quite a puzzle.

Table 1. Estimated effects (mostly odds ratios) of
acute infection on ischemic stroke.

First Hazard Estimate Exposure Design
author period
Grau, 7 days ~5 |nfection Case-
1995 14 days ~3 control
Bova, o . Case-
1996 1 week 3 Infection control
Grau, - . Case-
1998 1 week 3 Infection control
~ Case-
Paganini- 1 week Infection control
Hill, 2003 ~15 Case-
crossover
Smeeth, Case-series
2004 14 days 2-3* Infection (case-
crossover)
Clayton, 7 days ~2 Respiratory Case-
2008 8-28 days ~2 infection control
14 days ~8 Case-
- 30 days 7 Hospitalized crossover
Elkind, infection
2011 14 days ~Yx* Cohort
30 days ~2.5%*
Levine, o . Case-
2014 14 days 2 Infection crossover
Cowan, 14 days ~8 Hospitalized Case-
2016 30 days ~6 infection crossover
*rate ratio

**hazard ratio

Any critical mind should look for explanations. And
there are many, including the play of chance which
does not spare most estimates. | am looking for
biased estimators, however, and | will do so by
displaying causal diagrams for different study designs.
Every type of bias can be revealed and explained by a
causal diagram — so long as the diagram correctly
displays crucial variables and crucial causal

& When the disease is rare (stroke) the hazard rate ratio, the
rate ratio, and the odds ratio should all be similar, unless
censoring was substantial.
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connections. A causal diagram does not have to be
complete. None is complete.

Here is the notation | will be using:

E: exposure status (truth)

E4y: a diagnosis of infection

E*: the study version (measurement) of £

D: ischemic stroke (truth)

D* the study version (measurement) of D

: hospitalization status at the hazard period

: hospitalization status shortly after D
any confounder (a shared cause of £ and D).
any cause of hospitalization
any shared cause of exposure and hospitalization
selection status for a case-control study
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A cohort study: acute infection and stroke

Figure 1 shows several elements of a cohort study,
some of which are shared by other designs. The effect
of interest is identified by a question mark above the
arrow E->D, and the “hazard period” between E and
D is shown below the arrow (usually counted in days
in the case of infection and stroke). In a classic
measurement, the true variable is a cause of the
measured variable (E> E*, D> D*).

? *
E D D
) \ /

Hy ——> H;

Figure 1.

If you wonder about the path H;2>H,, here are two
arguments: First, in accord with an axiom of causality,
a variable at one time is a cause of that variable at
any later time."? Second, it is easy to propose causal
paths by which hospitalization (or not) at one time
affects the decision to admit a patient later, especially
when the interval is short (and here it is short). In
fact, the shorter the interval between a variable at
two time points, such as H; and H,, the stronger the
effect of the former on the latter.

Figure 1 is a good illustration of basic Information
bias. The bias exists whenever the association
between E* and D* (the association we estimate)
differs from the association between E and D (the

association we wish to estimate). In the simplest case,
all sources of information bias are attributed to a
single path between E£* and D*: E* < E->D->D*.

This is not the case here, however, nor in many other
examples. Stroke is a severe disease for which people
are usually hospitalized (D>H,), and there is little
doubt that location (hospital, elsewhere) affects the
extent and type of diagnostic modalities. Therefore,
hospitalization status affects the diagnosis of ischemic
stroke (H,>D*). As a result, we observe a second
path of information bias: E¥*€E->D->H,>D* (Figure
1).

Note that ascertaining D* from hospital records does
not block the path H,=>D*, which reflects the reality
of medical care. The path as depicted can be blocked
only by conditioning on H, — for example, by
restricting the entire sample to hospitalized patients
after the hazard period. (The consequences will be
examined in another design.) Alternatively, albeit
unrealistically, the effect H,»D* may be null if
researchers set up a measurement protocol that
ignores information from external medical sources.”

As far as information bias is concerned, Figure 1 is
good enough for a cohort study of many exposures,
but not for an exposure that may lead to
hospitalization, such as acute infection. A key arrow
should be added, E->H, (Figure 2).

Figure 2.
?
E D o*
\\/
Hy ———> H,
E*

This new arrow is a troublemaker. We now observe a
third path of information bias. Here are all three:

E*€E>D>D*
E*€E>D>H,>D*
E*€E>H, > H,>D*

 we rely on effect modification between D, H,, and a
research protocol for measuring D*. If interested, read a
commentary here titled “On effect modification and its
applications”.
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That several, open paths connect two variables does
not necessarily imply a stronger association.
(Negative confounding is a good example). But open
paths can add up, and they do add up here. Each of
the extra paths of information bias is expected to
generate a positive association between E* and D*.
The bias is compounded.

We might consider blocking the third path by
conditioning on Hy; for example, restricting the
sample of exposed and unexposed to people who
were (or were not) hospitalized during the hazard
period. That cohort design will indeed block paths
through H,;, but will create many more bypassing
paths through any other cause (Z) of H-variables and
through shared causes (R) of H, and E (Figure 3).

Figure 3.

H,

Which brings up a generic lesson: Conditioning on an
effect of the exposure opens the door to new
problems.

A cohort study: “hospitalized infection” and stroke

Figure 4 depicts the causal structure of a cohort study
in which the exposure is “hospitalized infection”,
namely, infection followed by hospitalization. | added
an interim Eg (say, a physician’s diagnosis of
infection) between E and E* and drew arrows from
Eq4x and H; to E*. To simplify, | depicted Z and omitted
R.

In this design E* is derived from two variables, £* =
f(Ea Hy), as follows:

If E;=1 and Hi=hospitalized, then E*=1. Otherwise,
E*=0.

Figure 4.
”
H D D*

VAWV,

Hy———> H,

Although not previously recognized, this method of
measuring E is subject to two (alternative) major
flaws. You may choose between the flaw of thought
bias and the flaw of information bias, as explained
next.

The variable “hospitalized infection status” itself is
not a natural variable in causal reality. It is a derived
variable, and like any derived variable (the output of a
function), it affects nothing. To assume that
“hospitalized infection” is a cause of ischemic stroke
is one of many examples of thought bias,"*** the bias
that arises by attributing causal properties to made-
up variables.

The usual escape route from thought bias is well
known: You do not claim that “hospitalized infection”
causes stroke. Rather, you claim that the variable
serves to impute the value “severe infection” of E.
You argue that you are estimating the effect of severe
infection, acknowledging that the unexposed group
contains milder forms of infection. It is not the case of
thought bias; it is negligible information bias (which
you would probably call “measurement error”).

Unfortunately, the argument fails. Not every
imputation of the values of one variable from other
variables is permissible in science.”® In particular, E
should not be imputed by a process that is known to
add bias by itself, a process with built-in extra bias
above and beyond difficult-to-avoid measurement
error. And not a negligible amount of bias — a lot of
bias. The derivation of E* from Eg4, and H, creates four
new paths of information bias through H, (Figure 4,
above):

E*€H,>H,>D*
E*€H,€Z>H,>D*
E*&H,€E>D>D*

E*$<H, €< E>D>H2>D*

¢ The disturbing idea was proposed in 2010 and has been
criticized, or endorsed, precisely zero times since then.
Dormant scholars? Cognitive dissonance? Silent agreement?
Make a guess.
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The first path delivers a strong association between
E* and D* because every segment is a strong effect.
The second path is not a single path: Every cause (2)
of hospitalization status creates such a path between
E* and D*, so replicate this path an unknown number
of times. The strength of the last two paths largely
depends on the strength of E>D (possibly weak.)
Collectively, however, these paths are a rich source of
information bias, which can easily explain a stronger
association of ischemic stroke with “hospitalized
infection” than with “infection”.

Look back at Table 1 and find the single cohort
design. The exposure was “hospitalized infection” and
the rate ratio in a hazard period of 14 days was about
4. How much information bias was built into the
estimator (Figure 4)?

A case-control study: acute infection and stroke

A case-control study calls for preferential selection of
people with the disease. The sample contains a much
higher ratio of diseased people (cases) to disease-free
(controls) than that ratio in the source population.
This feature of the case-control design is captured by
drawing an arrow between D* and S (selection
status). And since only the selected people are
studied, conditioning on S is inherent in any research
design (Figure 5).

If D* were the only cause of S, no problem would
arise; the odds ratio is immune to uni-path colliding
bias.’® But that’s not always the case. Location of the
person is often another cause of S, thereby turning S
into a collider. For example, in a case-control study of
hospitalized cases and non-hospitalized controls,
hospitalization status affects S (H,=>S). Furthermore,
the effect is modified by D*: When D*=1 (stroke), the
probability of being selected is much higher if the
person is hospitalized than not hospitalized. And
when D*=0 (stroke free), the probability of being
selected is much higher if the person is not
hospitalized than hospitalized. Effect modification
between D* and H, on S=selected implies a new
associational component (a dashed line) besides the
arrow H,~>D* (Figure 5).*°

Figure 5.

f = selected

Figure 5 is loaded with other dashed lines. They all
arise because conditioning on an effect of a collider is
equivalent to conditioning on a collider. For example,
E and Z are associated after conditioning on S,
because E and Z collide at Hy, and S is an effect of H;
(H;=>H,~>S). | did not depict R, any shared cause of
infection and hospitalization. You can imagine how
much clutter we would have seen in Figure 5 if R was
added (more dashed lines and more paths of bias).

Some induced paths in Figure 5 are sources of
information bias. They are paths between E* and D*
that contribute to the difference between the
estimated association (E* with D*) and the
association of interest (E with D). Other induced paths
account for colliding bias. They travel between E and
D themselves: E>H;--D and E--Z--D, for instance.
They contribute to the association between E and D
even if information bias is absent; even if E* and D*
are exact copies of E and D, respectively.

Is there a remedy? Is there a way to eliminate all
these induced paths? Let’s try to condition on H,
(Figure 6) — that is, to sample hospitalized cases and
hospitalized controls.

Figure 6.
OR=?
E = selected
N days
1
l
‘l
1
' H —-—H—;> H, | = hospitalized
‘.I: ;
vy !
“ | I
' 1
E* F4

Paths of information bias have been eliminated, but
paths of colliding bias remain, including paths
through R, shared causes of infection and
hospitalization (not shown).

Can the problem be solved by conditioning on H, as
well (Figure 7)?

Figure 7.
OR=?
Tays D o*—4 = selected
H [
' !'
1
’
. ;!
' 1
' [HE = hospitalized
\ ]z,'
Y
v [
i ’
E* z
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No, it is impossible to eliminate all paths of colliding
bias through Z (Figure 7) and through R (not shown).
To block these paths, we would need to condition on
both types of variables (which are not confounders).
At any rate, none of the studies in Table 1 correspond
to Figure 7. It is difficult to carry out a study in which
cases and controls must have been in the hospital
during the entire (preceding) hazard period. All cases
must have suffered stroke while already hospitalized.

How large is the bias?

It is difficult to quantify, but it is easy to argue in
qualitative terms. The magnitude of the bias depends
on the strength of open induced paths, which in turn
depends, in part, on the strength of dashed line
segments. The magnitude of the association behind a
dashed line depends, in part, on the magnitude of
effect modification between the colliding variables:*
the weaker the modification on the probability ratio
scale, the “weaker” the dashed line and the smaller
the bias.

Consider Figure 6, for example. The strength of D--Z
depends on the magnitude of effect modification
between D and Z with respect to H,=hospitalized. We
may argue that effect modification is weak in this
case because stroke is a severe disease, and the
decision to hospitalize for a severe disease should not
differ much according to the value of any other cause
of hospitalization. The same argument might hold for
the dashed line D--H;. Nonetheless, that’s not
necessarily the case for Z--H; and E--Z. Effect
modification may be strong so those dashed lines
might indicate strong associations (and large bias).
Recall that Z (and R) could stand for many variables.

A matched case-control study: acute infection and
stroke

Figure 8 shows the causal diagram for a classic
matched case-control study (matching on C).

Figure 8.

D* —it = selected

d A partially proven conjecture

The matched confounder (C) affects selection status
(S), and that’s the only difference from a diagram for
an unmatched case-control study in which we
condition on C. In both designs, we must condition on
the confounder because matching controls to cases
does not remove confounding bias by the matching
variable(s)."”

As before, | depicted Z to show how causes of
hospitalization add more paths of colliding bias. | did
not depict R, any shared cause of infection and
hospitalization. Again, you can imagine how much
clutter we would have seen in Figure 8 if R was added
(more dashed lines and more paths of bias). Some of
the case-control studies in Table 1 match Figure 8,
reporting odds ratios in the region of 2 to 3. How
much bias was built into those estimators?

| hope the lesson is clear. When the exposure affects
hospitalization, and hospitalization affects the
diagnosis, and the diagnosis affects selection — many
new roads are paved: roads of bias.

A case-crossover study: snow shoveling and stroke

Suppose we are interested in estimating the effect of
shoveling snow (not infection) on ischemic stroke
using a 1:1 matched case-control study. We recruit
James who has had a stroke and find Michael, a
matched control, say, matched on weight (and on sex,
of course). Next, we ask James and Michael whether
they shoveled snow any time during a hazard period
of 12 hours (Figure 9). Lastly, we use the set of such
case-control pairs to compute the odds ratio.

Figure 9.
CONTROL
(Stroke-free)
Shoveled snow? '”Michaef
I “Hazard EElmd" I
CONTROL CASE
(Stroke-free) (Stroke)
) ., James
Shoveled snow? n"r ames Shoveled SW?L

I “Hazard period" I I “‘Hazard period” I

Ey———>D,

Ey—>Dy

Eqo—> D,
E—>

“Hazard period”

. . 18
Alternatively, we may use a case-crossover design.

Like many clever ideas, the underlying idea is
remarkably simple at its core. Instead of matching
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James with Michael — a stranger — we match James
with James himself at some earlier time (say, a week
earlier) when James was stroke-free (Figure 9). Self-
matching implies matching not only on sex and
weight (if it hasn’t changed), but also on an unknown
number of variables whose values have not changed
between the early and late hazard periods. It does
not imply matching on variables that have changed.
Perhaps an irritating email arrived an hour before
James suffered a stroke, but not a week earlier.®

Notice that the “hazard period” in either stranger-
matching or self-matching allows for different
intervals between E and D (bottom of Figure 9). One
person might have shoveled snow at the beginning of
the hazard period, and another — an hour before the
end. The two effects may be different, and therefore,
the odds ratio is estimating some average of different
effect sizes. Keep this point in mind when you
compare an odds ratio for a 28-day hazard period
with an odds ratio for a 14-day hazard period. You are
comparing one average with a nested average.

Figure 10 shows the causal diagram for a case-
crossover design of snow shoveling and stroke. Three
points should be noted:

1) There is no conditioning on H,. James was not
required to be hospitalized at his control time (when
he was stroke free).

2) Z-type variables and R-type variables are also
matched on (and conditioned on), so long as the

value did not change.

3) The bias is attributed only to paths of information
bias (Figure 10).

Figure 10.

¢ Such causes (snow shoveling, an acute infection, an email
message) are often called “triggers” — a superfluous term. A
“trigger” is nothing more than a causal variable in some
arbitrary proximity to the effect. Therefore, “trigger” vis-a-
vis “cause” is a simple-minded distinction. There are no two
kinds of causes.

Overall, a reasonable design, with difficult-to-avoid
information bias. (Condition on H,: require James to
have been hospitalized right after both hazard
periods).

A case-crossover study: acute infection and stroke

Let E be acute infection rather than snow shoveling,
which means adding an arrow between E and H,. The
picture gets much worse (Figure 11). More paths of

information bias and two paths of colliding bias
(E%Hl--D; E9H19H2--D).

E p* f S |= selected
days , 1 . "

s\ B
’ Al 7
,I A} ’l
\
// ‘\”
}/ffi‘—/'} "’

E*

Figure 11.

Two studies in Table 1 match Figure 11. They
reported odds ratios on the order of 2 to 3.

A case-crossover study: “hospitalized infection” and
stroke

Change “acute infection” to “hospitalized infection”,
and the bias machine is turned on even more (Figure
12): two paths of colliding bias and more than a
dozen paths of information bias. (To simplify the
diagram, | omitted Z and R which are conditioned on,
if the value hasn’t changed.)

Figure 12.

selected

Here is the list of paths of bias in a case-crossover
study of “hospitalized infection” and ischemic stroke:
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Colliding bias

EDH,—-D
EDH,DH,-D

Information bias

E*€E, < EDDDD*
E*€E, € EDDDH,>D*
E*€Ey € E>DDH,-D*
E*&E & E>D--H,>D*

E*€E & E>D--H,-D*
E*€E € EDH, D H,> D*
E*€Egy € EDHyD Hy--D*

E*€H, € E>D>D*
E*€&H, & E>D>H,>D*
E*€H,€&E>D--H,>D*
E*€H,€E>D>H,--D*

E*€H,€E-> D--Hy--D*
E*&Hy > Hy>D*
E*€Hy>H,--D*

Look up two case-crossover studies of “hospitalized
infection” in Table 1. They reported odds ratios on
the order of 6 to 8. How much bias was built into the
estimators? Probably a lot.f

If you don’t have sufficient knowledge of causal
diagrams, just consider the following paradox.
Compared with other designs, a case-crossover study
will control a larger number of “time-stable
confounders”, and such confounders — in the case of
infection and stroke — are expected to create positive
confounding. We expect shared causes of infection
and stroke to be positively associated with both. In
fact, this point was made by the authors of one study
of hospitalized infection. Praising their case-crossover
design over classic case-control studies, they wrote:

“Such studies are limited, however, by potential
confounding due to underlying risk factors, such as
smoking, that could lead to both infection and

stroke”.®

If so, case-crossover studies should have removed
positive confounding, generating smaller estimates
than estimates reported from other, confounding-
prone, designs. Why, then, do we observe exactly the
opposite? Why do two case-crossover studies of
hospitalized infection report estimates that are twice
as large as those reported in other designs? And why
did the study quoted above find stronger effects of

f | was asked to co-author the work by Cowan et al. and
declined authorship after pointing out bias. Perhaps it was a
small conflict of interests: | gave up the chance of adding
another reader-reviewed article to my CV.

“hospitalized infection” in a case-crossover analysis
than in a cohort analysis?9 Strong negative
confounding (by what?) that overrode positive
confounding is one explanation. Ample paths of bias
is another (Figure 12). And no, it is not simply a
stronger effect of “severe infection”. That claim was
already addressed and dismissed (Page 3). Nor does it
explain, of course, larger estimates from a case-
crossover analysis than a cohort analysis of
“hospitalized infection” —in the very same study.9

One lesson is worth repeating, though: No one may
claim to have a valid imputation of the value “severe
infection” from H; when the imputation itself creates
at least half a dozen paths of bias through H, (Figure
12). It is analogous to claiming that the defendant is
guilty after planting incriminating evidence. The latter
is bad practice of law; the former — bad practice of
science.

Epilogue

So how big is the effect of acute infection on ischemic
stroke? What is the value of the causal parameter,
setting modifiers aside?

Considering sources of bias, as exposed here, | am
willing to place a bet on a range: an odds ratio (or
equivalent) of 1.1 (min) to 3 (max) in a 14-day hazard
period.

A tighter bet?

Somewhere between 1.1 and 1.9 for any infection
which is not severe; between 2 and 3 for a severe
infection; and nowhere near 6, or 7, or 8 — for either.
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